Longitudinal spread of mechanical excitation through tectorial membrane traveling waves.

نویسندگان

  • Jonathan B Sellon
  • Shirin Farrahi
  • Roozbeh Ghaffari
  • Dennis M Freeman
چکیده

The mammalian inner ear separates sounds by their frequency content, and this separation underlies important properties of human hearing, including our ability to understand speech in noisy environments. Studies of genetic disorders of hearing have demonstrated a link between frequency selectivity and wave properties of the tectorial membrane (TM). To understand these wave properties better, we developed chemical manipulations that systematically and reversibly alter TM stiffness and viscosity. Using microfabricated shear probes, we show that (i) reducing pH reduces TM stiffness with little change in TM viscosity and (ii) adding PEG increases TM viscosity with little change in TM stiffness. By applying these manipulations in measurements of TM waves, we show that TM wave speed is determined primarily by stiffness at low frequencies and by viscosity at high frequencies. Both TM viscosity and stiffness affect the longitudinal spread of mechanical excitation through the TM over a broad range of frequencies. Increasing TM viscosity or decreasing stiffness reduces longitudinal spread of mechanical excitation, thereby coupling a smaller range of best frequencies and sharpening tuning. In contrast, increasing viscous loss or decreasing stiffness would tend to broaden tuning in resonance-based TM models. Thus, TM wave and resonance mechanisms are fundamentally different in the way they control frequency selectivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Longitudinally propagating traveling waves of the mammalian tectorial membrane.

Sound-evoked vibrations transmitted into the mammalian cochlea produce traveling waves that provide the mechanical tuning necessary for spectral decomposition of sound. These traveling waves of motion that have been observed to propagate longitudinally along the basilar membrane (BM) ultimately stimulate the mechano-sensory receptors. The tectorial membrane (TM) plays a key role in this process...

متن کامل

Porosity controls spread of excitation in tectorial membrane traveling waves.

Cochlear frequency selectivity plays a key role in our ability to understand speech, and is widely believed to be associated with cochlear amplification. However, genetic studies targeting the tectorial membrane (TM) have demonstrated both sharper and broader tuning with no obvious changes in hair bundle or somatic motility mechanisms. For example, cochlear tuning of Tectb(-/-) mice is signific...

متن کامل

Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.

Sound is encoded within the auditory portion of the inner ear, the cochlea, after propagating down its length as a traveling wave. For over half a century, vibratory measurements to study cochlear traveling waves have been made using invasive approaches such as laser Doppler vibrometry. Although these studies have provided critical information regarding the nonlinear processes within the living...

متن کامل

Cochlear Mechanics Distributed Impedance Model of Tectorial Membrane Traveling Waves

The mammalian cochlea is a remarkable sensor that can detect motions smaller than the diameter of a hydrogen atom and can perform high-quality spectral analysis to discriminate as many as 30 frequencies in the interval of a single semitone (Kossl and Russell, 1995; Dallos, 1996). These extraordinary properties of the hearing organ depend on traveling waves of motion that propagate along the bas...

متن کامل

Geometric Requirements for Tectorial Membrane Traveling Waves in the Presence of Cochlear Loads.

Recent studies suggest that wave motions of the tectorial membrane (TM) play a critical role in determining the frequency selectivity of hearing. However, frequency tuning is also thought to be limited by viscous loss in subtectorial fluid. Here, we analyze effects of this loss and other cochlear loads on TM traveling waves. Using a viscoelastic model, we demonstrate that hair bundle stiffness ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 42  شماره 

صفحات  -

تاریخ انتشار 2015